Elektrotechnik

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Elektrotechnik ist diejenige Ingenieurwissenschaft, die sich mit der Forschung und der Entwicklung sowie der Produktionstechnik von Elektrogeräten befasst, die zumindest anteilig auf elektrischer Energie beruhen. Hierzu gehören der Bereich der Wandler, die elektrischen Maschinen und Bauelemente sowie Schaltungen für die Steuer-, Mess-, Regelungs-, Nachrichten-, Geräte- und Rechnertechnik bis hin zur technischen Informatik und Energietechnik.

Elektronische Schaltung

Aufgabengebiete

Die klassische Einteilung der Elektrotechnik war die Starkstromtechnik, die heute in der Energietechnik und der Antriebstechnik ihren Niederschlag findet, und die Schwachstromtechnik, die sich zur Nachrichtentechnik formierte. Als weitere Gebiete kamen die elektrische Messtechnik und die Automatisierungstechnik sowie die Elektronik hinzu. Die Grenzen zwischen den einzelnen Bereichen sind dabei vielfach fließend. Mit zunehmender Verbreitung der Anwendungen ergaben sich zahllose weitere Spezialisierungsgebiete. In unserer heutigen Zivilisation werden fast alle Abläufe und Einrichtungen elektrisch betrieben oder laufen unter wesentlicher Beteiligung elektrischer Geräte und Steuerungen.

Energietechnik

Übertragungsleitung

Die elektrische Energietechnik (früher Starkstromtechnik) befasst sich mit der Gewinnung, Übertragung und Umformung elektrischer Energie und auch der Hochspannungstechnik. Elektrische Energie wird in den meisten Fällen durch Wandlung aus mechanisch-rotatorischer Energie mittels Generatoren gewonnen. Zur klassischen Starkstromtechnik gehören außerdem der Bereich der Verbraucher elektrischer Energie sowie die Antriebstechnik. Zu dem Bereich der Übertragung elektrischer Energie im Bereich der Niederspannung zählt auch der Themenbereich der Elektroinstallationen, wie sie unter anderem vielfältig im Haushalt zu finden sind.

Klassische Unterbereiche oder Unterrichtsfächer an Fachschulen und Hochschulen sind unter anderem die Elektrische Energieverteilung, Netzleittechnik, Kraftwerkstechnologien, Produktion elektrischer Energie, Elektrische Maschinen, Energiespeichertechnologien, Leistungselektronik, Installationstechnik, Schutztechnik in Energienetzen, Energiewirtschaft, Smart Grids, Erneuerbare Energien.

Antriebstechnik

Die Antriebstechnik, früher ebenfalls als „Starkstromtechnik“ betrachtet, setzt elektrische Energie mittels elektrischer Maschinen in mechanische Energie um. Klassische elektrische Maschinen sind Synchron-, Asynchron- und Gleichstrommaschinen, wobei vor allem im Bereich der Kleinantriebe viele weitere Typen bestehen. Aktueller ist die Entwicklung der Linearmotoren, die elektrische Energie ohne den „Umweg“ über die Rotation direkt in mechanisch-lineare Bewegung umsetzen. Die Antriebstechnik spielt eine große Rolle in der Automatisierungstechnik, da hier oft eine Vielzahl von Bewegungen mit elektrischen Antrieben zu realisieren sind. Für die Antriebstechnik wiederum spielt Elektronik eine große Rolle, zum einen für die Steuerung und Regelung der Antriebe, zum anderen werden Antriebe oft mittels Leistungselektronik mit elektrischer Energie versorgt. Auch hat sich der Bereich der Lastspitzenreduzierung und Energieoptimierung im Bereich der Elektrotechnik erheblich weiterentwickelt.

Nachrichtentechnik

Mit Hilfe der Nachrichtentechnik, auch Informations- und Kommunikationstechnik (früher Schwachstromtechnik) genannt, werden Signale mit elektromagnetischen Wellen als Informationsträger von einer Informationsquelle (dem Sender) zu einem oder mehreren Empfängern (der Informationssenke) übertragen. Dabei kommt es darauf an, die Informationen so verlustarm zu übertragen, dass sie beim Empfänger erkannt werden können (siehe auch Hochfrequenztechnik, Amateurfunk). Wichtiger Aspekt der Nachrichtentechnik ist die Signalverarbeitung, zum Beispiel mittels Filterung, Kodierung oder Dekodierung.

Klassische Unterbereiche oder Unterrichtsfächer an Fachschulen und Hochschulen sind unter anderem die Kommunikationstheorie, Signaltheorie, Digitale Signalverarbeitung und Signalwandlung, Antennentechnik, Funktechnik, Mobilfunk, Hochfrequenztechnik & Mikrowellentechnik, Elektromagnetische Verträglichkeit, Satellitentechnik, Kodierungstheorie.

Elektronik, Mikroelektronik und Nanoelektronik

Die Elektronik befasst sich mit der Entwicklung, Fertigung und Anwendung von elektronischen Bauelementen wie zum Beispiel Spulen oder Halbleiterbauelementen wie Dioden und Transistoren. Die Mikroelektronik beschäftigt sich mit der Entwicklung und Herstellung integrierter Schaltkreise. In einigen Bereichen wurde die 100-Nanometer-Grenze unterschritten, so spricht man hier bereits formal von Nanoelektronik.

Die Entwicklung der Leistungshalbleiter (Leistungselektronik) spielt in der Antriebstechnik eine immer größer werdende Rolle, da Frequenzumrichter die elektrische Energie wesentlich flexibler bereitstellen können, als es beispielsweise mit Transformatoren möglich ist.

Die Digitaltechnik lässt sich insoweit der Elektronik zuordnen, als die klassische Logikschaltung aus Transistoren aufgebaut ist. Andererseits ist die Digitaltechnik auch Grundlage vieler Steuerungen und damit für die Automatisierungstechnik bedeutsam. Die Theorie ließe sich auch der theoretischen Elektrotechnik zuordnen.

Klassische Unterbereiche oder Unterrichtsfächer an Fachschulen und Hochschulen sind unter anderem die Analogtechnik, Digitaltechnik, PCB-Design, Chipentwurf, Mikroprozessortechnik, Mikrocontroller, Assembler und C-Programmierung, Eingebettete Systeme.

Automatisierungstechnik

In der Automatisierungstechnik werden mittels Methoden der Mess-, Steuerungs- und Regelungstechnik (zusammenfassend MSR-Technik genannt) einzelne Arbeitsschritte eines Prozesses automatisiert bzw. überwacht. Heute wird üblicherweise die MSR-Technik durch Digitaltechnik gestützt. Eines der Kerngebiete der Automatisierungstechnik ist die Regelungstechnik. Regelungen sind in vielen technischen Systemen enthalten. Beispiele sind die Regelung von Industrierobotern, Autopiloten in Flugzeugen und Schiffen, Drehzahlregelungen in Motoren, die Stabilitätskontrolle (ESP) in Automobilen, die Lageregelung von Raketen und die Prozessregelungen für Chemieanlagen. Einfache Beispiele des Alltags sind die Temperaturregelungen zusammen mit Steuerungen in vielen Konsumgütern wie Bügeleisen, Kühlschränken, Waschmaschinen und Kaffeeautomaten (siehe auch Sensortechnik).

Klassische Unterbereiche oder Unterrichtsfächer an Fachschulen und Hochschulen sind unter anderem die Systemtheorie, Regelungstechnik, Steuerungstechnik, Kybernetik, Messtechnik, Sensorik, Automatisierungstheorie, Robotik, Digitaltechnik, Speicherprogrammierbare Steuerung, Bildverarbeitung.

Elektronische Gerätetechnik

Die elektronische Gerätetechnik befasst sich mit der Entwicklung und Herstellung elektronischer Baugruppen und Geräte. Sie beinhaltet damit den Entwurf und die anschließende konstruktive Gestaltung elektronischer Systeme (Verdrahtungsträger, Baugruppen, Geräte).

Gebäudetechnik

In Gebäuden sorgen Elektroinstallationen sowohl für die leitungsgebundene Verteilung elektrischer Energie als auch für die Nutzungsmöglichkeit von Kommunikationsmitteln (Klingeln, Sprechanlagen, Telefone, Fernsehgeräte, Satellitenempfangsanlagen und Netzwerkkomponenten). Neben der leitungsgebundenen Informationsverteilung kommt verstärkt Funkübertragung (DECT, WLAN) zum Einsatz. Die Gebäudeautomation nutzt Komponenten der Mess-, Steuerungs- und Regelungstechnik in Gebäuden, um den Einsatz elektrischer und thermischer Energie zu optimieren. Im Rahmen der Gebäudeautomation finden zudem verschiedenste Systeme für Gebäudesicherheit Verwendung.

Theoretische Elektrotechnik

Die Basis der Theorie und Bindeglied zur Physik der Elektrotechnik sind die Erkenntnisse aus der Elektrizitätslehre. Die Theorie der Schaltungen befasst sich mit den Methoden der Analyse von Schaltungen aus passiven Bauelementen. Die theoretische Elektrotechnik, die Theorie der Felder und Wellen, baut auf den Maxwell-Gleichungen auf.

Geschichte, Entwicklungen und Personen der Elektrotechnik

Altertum

Das Phänomen, dass bestimmte Fischarten (z. B. Zitterrochen oder Zitteraal) elektrische Spannungen erzeugen können (mit Hilfe des Elektroplax), war im alten Ägypten um 2750 v. Chr. bekannt.

Die meteorologische Erscheinung der Gewitterblitze begleitet die Menschheit schon immer. Die Deutung, dass die Trennung elektrischer Ladungen innerhalb der Atmosphäre in Gewittern dieses Phänomen verursacht, erfolgte jedoch erst in der Neuzeit. Elektrostatische Phänomene waren allerdings schon im Altertum bekannt. Die erste Kenntnis über den Effekt der Reibungselektrizität etwa 550 v. Chr. wird dem Naturphilosophen Thales von Milet zugeschrieben. In trockener Umgebung kann Bernstein durch Reiben an textilem Gewebe (Baumwolle, Seide) oder Wolle elektrostatisch aufgeladen werden. Durch Aufnahme von Elektronen erhält Bernstein eine negative Ladung, das Reibmaterial durch Abgabe von Elektronen dagegen eine positive Ladung. Durch die Werke von Plinius dem Älteren wurde dieses Wissen bis ins Spätmittelalter überliefert.

17. und 18. Jahrhundert

19. Jahrhundert

  • Erasmus Kittler begründete 1883 an der TH Darmstadt (heute TU Darmstadt) den weltweit ersten Studiengang für Elektrotechnik. Der Studiengang dauerte vier Jahre und schloss mit einer Prüfung zum Elektrotechnikingenieur ab. 1885 und 1886 folgten das University College London (GB) und die University of Missouri (USA), die weitere eigenständige Lehrstühle für Elektrotechnik einrichteten. Die so ausgebildeten Ingenieure waren erforderlich, um eine großflächige Elektrifizierung zu ermöglichen.

20. Jahrhundert

  • John Ambrose Fleming erfand 1905 die erste Radioröhre, die Diode. 1906 entwickelten Robert von Lieben und Lee De Forest unabhängig voneinander die Verstärkerröhre, Triode genannt, die der Funktechnik einen wesentlichen Impuls gab.
  • John Logie Baird baute 1926 mit einfachsten Mitteln den ersten mechanischen Fernseher auf Grundlage der Nipkow-Scheibe. 1928 folgte der erste Farb-Fernseher. Im selben Jahr gelang ihm die erste transatlantische Fernsehübertragung von London nach New York. Bereits 1931 war seine Erfindung jedoch veraltet, Manfred von Ardenne führte damals die Kathodenstrahlröhre und damit das elektronische Fernsehen ein.
  • 1941 stellte Konrad Zuse den weltweit ersten funktionsfähigen Computer, den Z3, fertig, zudem der erste elektromechanische Computer. Im Jahr 1946 folgt der ENIAC (Electronic Numerical Integrator and Computer) von John Presper Eckert und John Mauchly. Die erste Phase des Computerzeitalters begann. Die so zur Verfügung stehende Rechenleistung ermöglichte es den Ingenieuren und der Gesellschaft, völlig neue Technologien zu entwickeln und Leistungen zu vollbringen. Ein frühes Beispiel ist die Mondlandung im Rahmen des Apollo-Programms der NASA.
  • Im Jahr 1968 erfand Marcian Edward Hoff, bekannt als Ted Hoff, bei der Firma Intel den Mikroprozessor und läutete damit die Ära des Personal Computers (PC) ein. Zugrunde lag Hoffs Erfindung ein Auftrag einer japanischen Firma für einen Desktop-Rechner, den er möglichst preisgünstig realisieren wollte. Die erste Realisierung eines Mikroprozessors war 1969 der Intel 4004, ein 4 Bit Prozessor. Aber erst der Intel 8080, ein 8-Bit-Prozessor aus dem Jahr 1973, ermöglichte den Bau des ersten PCs, des Altair 8800.
  • 1979 erhielten Sheldon Glashow, Steven Weinberg und Abdus Salam den Nobelpreis für Physik „für ihre Beiträge an der Theorie der vereinigten schwachen und elektromagnetischen Wechselwirkung zwischen Elementarteilchen, einschließlich u. a. die Voraussage der schwachen neutralen Ströme“ (Elektroschwache Wechselwirkung).
  • Die Firma Philips erfand 1978 die Compact Disc (CD) zur Speicherung digitaler Informationen. 1982 resultierte dann aus einer Kooperation zwischen Philips und Sony die Audio-CD. 1985 folgte die CD-ROM.
    Honda P2
  • 1982 haben Stanford R. Ovshinsky und Masahiko Oshitani zwischen 1962 bis 1982 den Nickel-Metallhydrid-Akkumulator zur marktreifen Zelle entwickelt.
  • 1991 erscheint der erste Lithium-Ionen-Akku auf dem Markt.
  • Im Jahr 1996 präsentierte die Firma Honda den weltweit ersten funktionsfähigen humanoiden Roboter, den P2. Einen ersten prototypischen humanoiden Roboter, der aber noch nicht voll funktionsfähig war, entwickelte bereits 1976 die japanische Waseda-Universität. Aus dem P2 resultierte der zurzeit aktuelle Android, Hondas etwa 1,20 m großer Asimo. Neben vielen elektronischen und elektrotechnischen Komponenten bestehen humanoide Roboter auch wesentlich aus mechanischen Komponenten, deren Zusammenspiel man als Mechatronik bezeichnet.

21. Jahrhundert

Elektrotechnik in der Berufswelt

Ausbildungsberufe

Fortbildung

Eine Fortbildung zum Elektromeister findet an einer Meisterschule statt und dauert 1 Jahr Vollzeit bzw. 2 Jahre berufsbegleitend. Eine Fortbildung zum Elektrotechniker kann an einer Technikerschule in 4 Semestern Vollzeit bzw. 8 Semestern berufsbegleitend absolviert werden.

Studienfach

Elektrotechnik wird an vielen Universitäten, Fachhochschulen und Berufsakademien als Studiengang angeboten. An Universitäten wird während des Studiums die wissenschaftliche Arbeit betont, an Fachhochschulen und Berufsakademien steht die Anwendung physikalischer Kenntnisse im Vordergrund.

Die ersten Semester eines Elektrotechnik-Studiums sind durch die Lehrveranstaltungen Grundlagen der Elektrotechnik, Physik und Höhere Mathematik geprägt. In den Lehrveranstaltungen Grundlagen der Elektrotechnik werden die physikalischen Grundlagen der Elektrotechnik vermittelt. Diese Elektrizitätslehre umfasst die Themen:

Aufgrund der Interdisziplinarität und der engen Verflechtung mit der Informatik ist auch Programmierung Teil eines Elektrotechnik-Studiums. Weitere Grundlagenfächer sind Elektrische Messtechnik, Digitaltechnik, Elektronik sowie Netzwerk- und Systemtheorie. Als Vertiefungsfächer finden sich beispielsweise Nachrichtentechnik, Regelungstechnik, Automatisierungstechnik, Elektrische Maschinen, Elektrische Energietechnik oder Modellbildung/Simulation.

Der jahrzehntelang von den Hochschulen verliehene akademische Grad Diplom-Ingenieur (Dipl.-Ing. bzw. Dipl.-Ing. (FH)) wurde aufgrund des Bologna-Prozesses durch ein zweistufiges System berufsqualifizierender Studienabschlüsse (typischerweise in der Form von Bachelor und Master) ersetzt. Der Bachelor (Bachelor of Engineering oder Bachelor of Science) ist ein erster berufsqualifizierender akademischer Grad, der je nach Prüfungsordnung des jeweiligen Fachbereichs nach einer Studienzeit von 6 bzw. 7 Semestern erworben werden kann. Nach einer weiteren Studienzeit von 4 bzw. 3 Semestern kann der Master als zweiter akademischer Grad (Master of Engineering oder Master of Science) erlangt werden. Der „Doktor-Ingenieur“ ist der höchste akademische Grad, der im Anschluss an ein abgeschlossenes Masterstudium im Rahmen einer Assistenzpromotion oder in einer Graduate School erreicht werden kann.

An einigen Hochschulen kann der Bachelor-Studiengang Elektro- und Informationstechnik in sieben Semestern mit anschließendem dreisemestrigem Master-Studiengang Master für Berufliche Bildung studiert werden. Mit diesem Master-Abschluss und nach weiteren 1,5 Jahren Referendariatszeit besteht die Möglichkeit, eine berufliche Tätigkeit als Gewerbelehrer (höherer Dienst) an einer Berufsschule zu finden.

Verbände

Der größte Berufsverband für Elektrotechnik weltweit ist das Institute of Electrical & Electronics Engineers (IEEE). Er zählt über 420.000 Mitglieder und publiziert Zeitschriften auf allen relevanten Fachgebieten in Englisch. Seit 2008 gab es den IEEE Global History Network (IEEE GHN), wobei in verschiedenen Kategorien wichtige Meilensteine (beurteilt durch ein Fachgremium) und persönliche Erinnerungen von Ingenieuren (IEEE First-Hand History) festgehalten werden können. Solche Erinnerungsberichte von Schweizer Elektroingenieuren können als Beispiele eingesehen werden.[5][6] Seit Anfang 2015 hat sich der IEEE GHN einer erweiterten Organisation Engineering and Technology History Wiki angeschlossen, welche weitere Fachbereiche des Ingenieurwesens umfasst.

Der VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. ist ein technisch-wissenschaftlicher Verband in Deutschland. Mit ca. 35.000 Mitgliedern engagiert sich der VDE für ein besseres Innovationsklima, Sicherheitsstandards, für eine moderne Ingenieurausbildung und eine hohe Technikakzeptanz in der Bevölkerung.

Der Zentralverband der Deutschen Elektro- und Informationstechnischen Handwerke (ZVEH) vertritt die Interessen von Unternehmen aus den drei Handwerken Elektrotechnik, Informationstechnik und Elektromaschinenbau. ZVEH-Mitglied waren im Jahr 2014 55.579 Unternehmen, die 473.304 Arbeitnehmer, davon rund 38.800 Auszubildende, beschäftigten. Dem ZVEH als Bundesinnungsverband gehören zwölf Fach- und Landesinnungsverbände mit insgesamt etwa 330 Innungen an.

Der Zentralverband Elektrotechnik- und Elektronikindustrie e.V. (ZVEI) setzt sich für die Interessen der Elektroindustrie in Deutschland und auf internationaler Ebene ein. ZVEI-Mitglied sind mehr als 1.600 Unternehmen, in denen im Jahr 2014 etwa 844.000 Beschäftigte in Deutschland tätig waren. Als ZVEI-Untergliederungen finden sich derzeit 22 Fachverbände.

Siehe auch

 Portal: Elektrotechnik – Übersicht zu Wikipedia-Inhalten zum Thema Elektrotechnik
 Portal: Mikroelektronik – Übersicht zu Wikipedia-Inhalten zum Thema Mikroelektronik

Literatur

  • Winfield Hill, Paul Horowitz: Die hohe Schule der Elektronik, Tl.2, Digitaltechnik. Elektor-Verlag 1996, ISBN 3-89576-025-0.
  • Eugen Philippow, Karl Walter Bonfig (Bearb.): Grundlagen der Elektrotechnik. Verlag Technik, Berlin, 10. Auflage 2000, ISBN 3-341-01241-9.
  • Winfield Hill, Paul Horowitz: Die hohe Schule der Elektronik, Tl.1, Analogtechnik. Elektor-Verlag 2002, ISBN 3-89576-024-2.
  • Manfred Albach: Grundlagen der Elektrotechnik 1. Erfahrungssätze, Bauelemente, Gleichstromschaltungen. Pearson Studium, München 2004, ISBN 3-8273-7106-6.
  • Manfred Albach: Grundlagen der Elektrotechnik 2. Periodische und nicht periodische Signalformen. Pearson Studium, München 2005, ISBN 3-8273-7108-2.
  • Gert Hagmann: Grundlagen der Elektrotechnik. 11. Auflage, Wiebelsheim 2005, ISBN 3-89104-687-1.
  • Helmut Lindner, Harry Brauer, Constanz Lehmann: Taschenbuch der Elektrotechnik und Elektronik. Fachbuchverlag im Carl Hanser Verlag, Leipzig; München, 9. Auflage 2008, ISBN 978-3-446-41458-7.
  • Siegfried Altmann, Detlef Schlayer: Lehr- und Übungsbuch Elektrotechnik. Fachbuchverlag, Leipzig; Köln 1995, 4. Auflage: Fachbuchverlag im Carl Hanser Verlag, Leipzig; München 2008, ISBN 978-3-446-41426-6.
  • Wolfgang König: Technikwissenschaften. Die Entstehung der Elektrotechnik aus Industrie und Wissenschaft zwischen 1880 und 1914. Chur: G + B Verlag Fakultas, 1995. ISBN 3-7186-5755-4 (Softcover).

Weblinks

 Wiktionary: Elektrotechnik – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Wikibooks: Formelsammlung Elektrotechnik – Lern- und Lehrmaterialien
 Wikibooks: Formelsammlung Elektrizitätslehre – Lern- und Lehrmaterialien
 Wikibooks: Regal:Elektrotechnik – Lern- und Lehrmaterialien
 Wikisource: Elektrotechnik (1914) – Quellen und Volltexte

Einzelnachweise

  1. William Gilbert: Tractatvs Siue Physiologia Nova De Magnete, Magneticisqve Corporibvs Et Magno Magnete tellure. Sex libris comprehensus. Online-Angebot der Herzog August Bibliothek Wolfenbüttel (http://diglib.hab.de/drucke/nc-4f-46/start.htm).
  2. James Clerk Maxwell: A Dynamical Theory of the Electromagnetic Field. 1864 eingereicht und dann veröffentlicht in: Philosophical Transactions of the Royal Society of London (155), 1865, S. 459–512.
  3. Albrecht Fölsing: Heinrich Hertz. Hoffmann und Campe, Hamburg 1997, ISBN 3-455-11212-9, S. 275.
  4. Joachim Beckh: Blitz und Anker, Band 1, Seite 259 ISBN 3-8334-2996-8, abgefragt am 20. Dezember 2015.
  5. Peter J. Wild: First-Hand:Liquid Crystal Display Evolution – Swiss Contributions. 24. August 2011, abgerufen am 25. März 2015.
  6. Remo J. Vogelsang: First-Hand:PDP-8/E OMNIBUS Ride. 21. Juli 2013, abgerufen am 25. März 2015.