Dies ist ein als lesenswert ausgezeichneter Artikel.

Vollständige Induktion

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die vollständige Induktion ist eine mathematische Beweismethode, nach der eine Aussage für alle natürlichen Zahlen bewiesen wird, die größer oder gleich einem bestimmten Startwert sind. Da es sich um unendlich viele Zahlen handelt, kann eine Herleitung nicht für alle Einzelfälle erbracht werden.

Der Beweis, dass die Aussage für alle ( meist 1 oder 0) gilt, wird daher in zwei Etappen durchgeführt:

  1. Im Induktionsanfang wird die Aussage für eine kleinste Zahl hergeleitet.
  2. Im Induktionsschritt wird die Aussage aus der Aussage für hergeleitet.

Dieses Beweisverfahren ist von grundlegender Bedeutung für die Arithmetik und Mengenlehre und damit für alle Gebiete der Mathematik.

Aussageformen

Die vollständige Induktion befasst sich mit der Gültigkeit von Aussageformen .

Beispiel (Siehe Gaußsche Summenformel):

 für 

Wenn man Werte für einsetzt, erhält man Aussagen, die wahr oder falsch sind.

 



In dem Beispiel sind sie offensichtlich alle wahr. Da man dies nicht für alle (unendlich viele) Zahlen nachrechnen kann, bedarf es eines besonderen Beweisverfahrens. Dies liefert die vollständige Induktion.

Die Aussageform ist allgemeingültig, wenn sie für alle wahr ist.

Um die Allgemeingültigkeit der Aussageform zu beweisen, zeigt man Folgendes:

  1. (Induktionsanfang) und
  2. aus der Aussage (der Induktionsannahme) folgt die Aussage . (Das ist der Induktionsschritt.)[1]

Veranschaulichung

Vollständige Induktion als Dominoeffekt mit unendlich vielen Steinen

Die Methode der vollständigen Induktion ist mit dem Dominoeffekt vergleichbar: Wenn der erste Dominostein fällt und durch jeden fallenden Dominostein der nächste umgestoßen wird, so wird schließlich jeder Dominostein der unendlich lang gedachten Kette irgendwann umfallen.

Die Allgemeingültigkeit einer Aussageform ist für n = 1, 2, 3, … bewiesen, wenn gültig ist (der erste Stein fällt um) und wenn zusätzlich gilt für n = 1, 2, 3, … (jeder Stein reißt beim Umfallen den nächsten Stein mit).

Etymologie und Geschichte

Die Bezeichnung Induktion leitet sich ab von lat. inductio, wörtlich „Hineinführung“. Der Zusatz vollständig signalisiert, dass es sich hier im Gegensatz zur philosophischen Induktion, die aus Spezialfällen ein allgemeines Gesetz erschließt und kein exaktes Schlussverfahren ist, um ein anerkanntes deduktives Beweisverfahren handelt.

Das Induktionsprinzip steckt latent bereits in der von Euklid überlieferten pythagoreischen Zahlendefinition: „Zahl ist die aus Einheiten zusammengesetzte Menge.“[2] Euklid führte aber noch keine Induktionsbeweise, sondern begnügte sich mit intuitiven, exemplarischen Induktionen, die sich aber vervollständigen lassen. Auch andere bedeutende Mathematiker der Antike und des Mittelalters hatten noch kein Bedürfnis nach präzisen Induktionsbeweisen. Vereinzelte Ausnahmen im hebräischen und arabischen Sprachraum blieben ohne Nachfolge.[3][4]

Lange galt ein Beweis von Franciscus Maurolicus von 1575 als älteste explizite vollständige Induktion (unten ausgeführt).[5] Er erörterte aber das allgemeine Beweisverfahren noch nicht. Erst Blaise Pascal thematisierte das Induktionsprinzip mit Induktionsanfang und Induktionsschritt in seinem Traité du triangle arithmétique von 1654.[6] Zur Verbreitung von Induktionsbeweisen trug ab 1686 Jakob I Bernoulli wesentlich bei.[7]

Das Beweisverfahren wurde dann 1838 von Augustus De Morgan erstmals als Induktion oder sukzessive Induktion bezeichnet.[8] 1888 prägte schließlich Richard Dedekind in seiner Schrift Was sind und was sollen die Zahlen? den Begriff vollständige Induktion.[9] Über dieses Werk aus der Gründerzeit der Mengenlehre wurde sie zum allgemein bekannten, etablierten Beweisprinzip, auf das seither kein Zweig der Mathematik mehr verzichten kann. Ein Jahr später, 1889, formulierte Giuseppe Peano mit den Peanoschen Axiomen den ersten formalisierten Kalkül für die natürlichen Zahlen mit einem Induktionsaxiom, aus dem das Beweisschema der vollständigen Induktion herleitbar ist.[10] Er zeigte mit formaler Strenge, dass aus seinen Zahlaxiomen, zu denen das Induktionsaxiom gehört, die ganze Arithmetik bis hin zu den reellen Zahlen ableitbar ist. Dadurch machte er die fundamentale Bedeutung und die Leistungskraft der Induktion voll bewusst.

Definition

Seit Richard Dedekind ist die vollständige Induktion folgendermaßen festgelegt:

Um zu beweisen, dass ein Satz für alle natürlichen Zahlen gilt, genügt es zu zeigen, dass er für gilt und dass aus der Gültigkeit des Satzes für eine Zahl stets seine Gültigkeit auch für die folgende Zahl folgt.[9]

Als formale Schlussregel mit Ableitungsoperator lautet die vollständige Induktion für eine Aussage und eine natürliche Zahl :


Diese Schlussregel ist eine kompakte Formulierung des Beweisschemas der vollständigen Induktion, das didaktisch etwas ausführlicher formuliert werden kann:

Soll die Formel für alle natürlichen Zahlen bewiesen werden, dann genügen dazu zwei Beweisschritte:
  1. der Induktionsanfang: der Beweis von ,
  2. der Induktionsschritt: der Beweis der Induktionsbehauptung aus und der Induktionsvoraussetzung (auch Induktionsannahme) .
Nach obiger Schlussregel folgt dann die Verallgemeinerung der Formel auf alle natürlichen Zahlen (der abschließende Induktionsschluss).

Meist ist oder . ist jedoch möglich.


Da die Aussage für gleichwertig ist zur Aussage für , lässt sich Dedekinds Induktion auf die vollständige Induktion von 0 aus zurückführen:[11]

Die Axiomatik der natürlichen Zahlen durch Peano

Peano bewies 1889 mit vollständiger Induktion die grundlegenden Rechenregeln für die Addition und Multiplikation: das Assoziativgesetz, Kommutativgesetz und Distributivgesetz.[12][13]

Das Axiom der vollständigen Induktion

Die vollständige Induktion ist ein Axiom der natürlichen Zahlen. Meist wird sie jedoch aus dem gleichwertigen fünften Peano-Axiom - dem Induktionsaxiom - hergeleitet. Dieses lautet:

Ist eine Teilmenge der natürlichen Zahlen mit den Eigenschaften:

  1. ist ein Element von
  2. Mit aus ist stets auch aus ,

dann ist .

Auch in anderen Konzepten der natürlichen Zahlen sind die Peano-Axiome und damit auch das Beweisverfahren der vollständigen Induktion herleitbar, zum Beispiel bei der Definition der natürlichen Zahlen

  • als von 1 erzeugte geordnete Halbgruppe, die der zitierten pythagoreischen Zahlendefinition entspricht[2]
  • als frei von 1 erzeugtes Monoid, das von der Addition der Zahlen ausgeht[14]
  • als Algebra mit Nachfolger-Abbildung, die Dedekinds Zahlendefinition entspricht[15][16]
  • als kleinste induktive Menge, nämlich als kleinste Menge, die das Unendlichkeitsaxiom erfüllt, wie es in der Mengenlehre üblich ist
  • als Klasse der endlichen Ordinalzahlen, die nur eine allgemeine Mengenlehre ohne Unendlichkeitsaxiom voraussetzt

Beispiele

Gaußsche Summenformel

Die Gaußsche Summenformel lautet: Für alle natürlichen Zahlen gilt

   

Sie kann durch vollständige Induktion bewiesen werden.

Der Induktionsanfang ergibt sich unmittelbar:

    .

Im Induktionsschritt ist zu zeigen, dass aus der Induktionsvoraussetzung

   

die Induktionsbehauptung

    für

folgt. Dies gelingt folgendermaßen:

(Hauptnenner 2)
(Ausklammern von )

Schließlich der Induktionsschluss: Damit ist die Aussage A(n) für alle n ≥ 1 bewiesen.

Summe ungerader Zahlen (Maurolicus 1575)

Beweis der Summenformel über ungerade Zahlen mit Hilfe der vollständigen Induktion

Die schrittweise Berechnung der Summe der ersten ungeraden Zahlen legt die Vermutung nahe: Die Summe aller ungeraden Zahlen von bis ist gleich dem Quadrat von :

1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

Der allgemeine Satz lautet: . Ihn bewies Maurolicus 1575 mit vollständiger Induktion.[5] Ein Beweis mit heute geläufigen Rechenregeln liest sich folgendermaßen:

Der Induktionsanfang gilt wegen .

Beim Induktionsschritt ist zu zeigen: Wenn , dann . Er ergibt sich über folgende Gleichungskette, bei der in der zweiten Umformung die Induktionsvoraussetzung angewandt wird:

.

Bernoullische Ungleichung

Die Bernoullische Ungleichung lautet für reelle Zahlen mit und natürliche Zahlen

.

Der Induktionsanfang gilt hier wegen (wenn man der Konvention folgt). Den Induktionsschritt gewinnt man über folgende Ableitung, die im zweiten Schritt die Induktionsvoraussetzung verwendet, wobei obige Bedingung für dafür sorgt, dass der Term nicht negativ wird:

Induktionsvarianten

Induktion mit beliebigem Anfang

Induktionsbeweis der Ungleichung für natürliche Zahlen :

Der Induktionsanfang für ergibt sich mit .
Der Induktionsschritt gilt aufgrund folgender Ableitung, die im zweiten Schritt die Induktionsvoraussetzung und im vierten und sechsten Schritt die Voraussetzung anwendet:
.

Die endlich vielen Fälle, die solch ein allgemeinerer Induktionsbeweis nicht abdeckt, können einzeln untersucht werden. Im Beispiel ist die Ungleichung für offenbar falsch.

Induktion mit mehreren Vorgängern

In manchen Induktionsbeweisen benötigt man eine Induktionsvoraussetzung für mehrere Vorgänger; der Induktionsanfang ist dann für mehrere Startwerte durchzuführen. Ist zur Ableitung einer Formel etwa die Induktionsvoraussetzung für n und n−1 nötig, dann ist ein Induktionsanfang für zwei aufeinander folgende Zahlen, also etwa 0 und 1, erforderlich.[17] Als Induktionsvoraussetzung kann auch die Aussage für alle Zahlen zwischen dem Startwert und n dienen. Ein Beispiel[18] ist der Beweis, dass jede natürliche Zahl einen Primzahl-Teiler hat:

Induktionsanfang: 2 ist durch die Primzahl 2 teilbar. Induktionsschritt: Die Aussage sei für alle mit erfüllt. Ist nun eine Primzahl, so ist selbst der gesuchte Teiler. Ist keine Primzahl, so gibt es zwei Zahlen mit und . Beide Zahlen erfüllen also die Induktionsvoraussetzung. Insbesondere besitzt einen Primzahl-Teiler . teilt auch und ist somit ein Primzahl-Teiler von .

Starke Induktion

Die Aussage ist für alle gültig, wenn Folgendes für ein beliebiges gezeigt wird:

(Induktionsschritt:) Die Aussage (die Induktionsbehauptung) folgt aus
    (Induktionsvoraussetzung)[19]
(Induktionsschluss:) Damit gilt die Aussage für alle .

Der Induktionsanfang, d. i. die Aussage , ist im Induktionsschritt mit der für leeren Induktionsvoraussetzung nachzuweisen.[20] Es kann überdies vorkommen, dass mehr als eine Anfangsaussage vorab zu zeigen istd (siehe Fibonacci-Folge).

Beispiel: Fibonacci-Folge#Induktiver Beweis

Offensichtlich folgt die (in der Einleitung formulierte) gewöhnliche vollständige Induktion aus der starken Induktion. Man kann aber auch die starke Induktion mit Hilfe der gewöhnlichen vollständigen Induktion beweisen.[21]

Beweis  

Zu zeigen ist:

Wenn für alle
aus (Induktionsvoraussetzung gewöhnlich ⇒ stark)
folgt,
dann gilt
für alle . (Induktionsschluss gewöhnlich ⇒ stark)

Wir definieren die folgende Aussage für natürliche Zahlen

und zeigen ihre Gültigkeit mittels gewöhnlicher vollständiger Induktion.

Induktionsanfang: Hier ist nichts zu zeigen, da , d. h. , die leere Aussage ist.

Induktionsschritt von nach :

Sei beliebig und es gelte , d. h. es gelte
.
Wegen der (Induktionsvoraussetzung gewöhnlich ⇒ stark) folgt daraus
.
Zusammengenommen mit ergibt dies
.

Damit haben wir gezeigt, und der gewöhnliche Induktionsschritt ist fertig. Wir schließen (gewöhnlicher Induktionsschluss):

Für alle gilt .

Wegen ergibt sich a fortiori der starke Induktionsschluss:

Für alle gilt .

Trotz dieser Gleichwertigkeit in der Beweisstärke ist der Unterschied in der Ausdrucksstärke wegen der beliebig vielen Startwerte und der Möglichkeit des Rückgriffs auf beliebig viele Vorgänger groß, besonders bei rekursiven Definitionen. Das bedeutet aber keineswegs, dass letztere Definitionen nicht in gewöhnliche Rekursionen überführt werden können.

Induktion mit Vorwärts-Rückwärts-Schritten

Augustin-Louis Cauchy führte 1821 eine Induktionsvariante vor, bei der der vorwärts gerichtete Induktionsschritt Sprünge macht (etwa von nach ) und die entstehenden Lücken nachträglich durch einen rückwärts gerichteten Induktionsschritt von nach gefüllt werden.[22][23]

1
 ↓
 2
 ↓
 4→ 3
 ↓
 8→ 7→ 6→ 5
 ↓
16→ 15→ 14→ 13→ 12→ 11→ 10→ 9
 ↓
32→ 31→ 30→ 29→ 28→ 27→ 26→ 25→ 24→ 23→ 22→ 21→ 20→ 19→ 18→ 17
 ↓ ...

Beispiel: Ungleichung vom arithmetischen und geometrischen Mittel

Weitere Induktionsvarianten

Es gibt auch Sachlagen, bei denen Aussagen über alle ganzen Zahlen (positive und negative) mit vollständiger Induktion bewiesen werden können. Der Beweis in die positive Richtung geschieht wie gewohnt mit einem beliebigen Induktionsanfang und dem positiven Induktionsschritt von nach . Danach kann es möglich sein, den Induktionsschritt in die negative Richtung von nach auszuführen. Beispielsweise lässt sich bei der Fibonacci-Folge die Rekursionsgleichung in die Gegenrichtung umstülpen.

Die vollständige Induktion ist von natürlichen Zahlen verallgemeinerbar auf Ordinalzahlen. Bei Ordinalzahlen, die größer als die natürlichen Zahlen sind, spricht man dann von transfiniter Induktion.

Die Induktion ist auch übertragbar auf sogenannte fundierte Mengen, die eine der Zahlenordnung vergleichbare Ordnungsstruktur aufweisen; hier spricht man zuweilen von struktureller Induktion.

Rekursive oder induktive Definition

Die rekursive Definition – auch induktive Definition genannt[24][25] – ist ein der vollständigen Induktion analoges Verfahren, bei der ein Term durch einen Rekursionsanfang und einen Rekursionsschritt definiert wird.

Beispiel einer rekursiven Funktion


Mit Hilfe der vollständigen Induktion kann man beweisen (Gaußsche Summenformel):

 

Die geschlossene Formel erspart die umständliche rekursive Berechnung.

Umgekehrt zeigt das nächste Beispiel, dass eine rekursive Berechnung günstiger sein kann.

Beispiel einer rekursiv definierten Funktion:


Man kann mit Hilfe der vollständigen Funktion nach zeigen, dass

 für n≥0 ist.

Der Vorteil dieser rekursiven Funktion ist, dass man bei der Berechnung hoher Potenzen nicht Multiplikationen, sondern nur Multiplikationen in der Größenordnung von hat.[26] Sehr hohe Potenzen werden zum Beispiel bei der RSA-Verschlüsselung von Nachrichten verwendet.

Die rekursive Definition hat wie die Induktion allerlei differenzierte Varianten.

Weblinks

Einzelnachweise

  1. Induktionsanfang und Induktionsschritt sind oft mit Methoden der "Schullogik" herleitbar. Bei der vollständigen Induktion handelt es sich jedoch um ein Verfahren der Prädikatenlogik zweiter Stufe.
  2. a b Euklids Elemente VII, Definition 2. Dazu: Wilfried Neumaier: Antike Rhythmustheorien, Kap. 1 Antike mathematische Grundbegriffe, S. 11–12.
  3. Rabinovitch: Rabbi Levi Ben Gershon and the Origins of Mathematical Induction, in: Archive for History of Exact Sciences 6 (1970), S. 237–248.
  4. Roshdi Rashed: L'induction mathématique: al-Karajī, as-Samaw'al, in: Archive for History of Exact Sciences 9 (1972), S. 1–21.
  5. a b Maurolycus: Arithemticorum Liber primus, S. 7, Proposition 15a. eingeschränkte Vorschau in der Google-Buchsuche.
  6. Blaise Pascal: Traité du triangle arithmétique, S. 7, Conséquence douziesme, Le 1. (Induktionsanfang), Le 2. (Induktionsschritt), digital eingeschränkte Vorschau in der Google-Buchsuche.
  7. Lexikon bedeutender Mathematiker, Leipzig 1990, Artikel „Jakob Bernoulli“, S. 48.
  8. De Morgan: Artikel Induction (Mathematics) in: Penny Cyclopædia XII (1838), S. 465–466.
  9. a b Richard Dedekind: Was sind und was sollen die Zahlen?, Braunschweig 1888, § 6 Satz 80, Originalwortlaut: Satz der vollständigen Induktion (Schluss von n auf n’). Um zu beweisen, dass ein Satz für alle Zahlen n einer Kette m0 gilt, genügt es zu zeigen, dass er für n = m gilt und dass aus der Gültigkeit des Satzes für eine Zahl n der Kette m0 stets seine Gültigkeit auch für die folgende Zahl n’ folgt.
  10. Peano: Arithmetices principia nova methodo exposita, 1889, in: G. Peano, Opere scelte II, Rom 1958, S. 20–55.
  11. Man kann die Aussage durch definieren und mit ihr die Induktion mit Induktionsanfang durchführen.
  12. Peano: Arithmetices principia nova methodo exposita. 1889. In: G. Peano: Opere scelte. Band II. Rom 1958. S. 35–36, 40–41.
  13. ausführliche Beweise auch in: Edmund Landau: Grundlagen der Analysis. Leipzig 1930.
  14. Felscher: Naive Mengen und abstrakte Zahlen I, S. 130–132.
  15. Dedekind: Was sind und was sollen die Zahlen?, § 6, Erklärung 71.
  16. dargestellt als Dedekind-Tripel in: Felscher: Naive Mengen und abstrakte Zahlen I, S. 147.
  17. vergleiche den Beweis der Formel von Binet für die Fibonacci-Folge
  18. Ein Beispiel ist auch der Beweis des Zeckendorf-Theorems; Der Satz von Zeckendorf
  19. Definitionsgemäß ist .
    Man kann beim Beweis der Induktionsbehauptung also voraussetzen, dass für alle Zahlen von bis gilt.
  20. Da das neutrale Element der Und-Verknüpfung ist und deshalb die leere Und-Verknüpfung den Wahrheitswert ergibt, ist die Implikation durch das Zutreffen von nachzuweisen.
  21. Oliver Deiser Einführung in die Mathematik.
    Der hauptsächliche Unterschied des starken Induktionsschemas zum gewöhnlichen ist – wie der Beweis zeigt, dass die vom gewöhnlichen Schema verwendeten (und quasi weggeworfenen) Induktionsvoraussetzungen beim starken Schema erhalten bleiben.
  22. Cauchy, Augustin-Louis. Analyse algebrique. Paris 1821. Der Beweis der Ungleichung vom arithmetischen und geometrischen Mittel ist dort auf Seite 457 ff.
  23. Eine Vorwärts-Rückwärts-Induktion ist auch der Beweis der jensenschen Ungleichung. Jensen: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. In: Acta Math. 30, 1906, S. 175–193.
  24. Hausdorff: Grundzüge der Mengenlehre. 1914. S. 112–113 eingeschränkte Vorschau in der Google-Buchsuche.
  25. Peano: Le Definitione in Matematica. In: Opere scelte. Band II, 1921. S. 431, § 7 Definizioni per induzione.
  26. Zum Beispiel errechnet sich
    für x=3 wird wird in 6 Rechenschritten berechnet:
    1.
    2.
    3. 6 561
    4. 43 046 721
    5. 1 853 020 188 851 841
    6. 12 157 665 459 056 928 801
Dieser Artikel wurde am 15. Juli 2010 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.